Thursday, 4 July 2013

Kinecto Therapy - Rehab with the Kinect



http://www.kinectotherapy.in/

Astrojumper with Kinect camera



Disabled access to the Xbox Kinect - hardware and games

Much has been discussed since the release of the Kinect about its accessibility for wheelchair users or those with a disability.

Early on Ablegamers.com published two articles - links below, that present the current issues and presented the hardware as it was back then.  They present the issues clearly and honestly, highlighting some potential developments that were hoped would influence game development, with the disabled user in mind.

Kinect and the disabled part 1

Kinect and the disabled part 2

So where are we now?  The Kinect is now established as a motion controller, both for the Xbox itself and with a PC.  Whilst the Xbox Kinect games continue to cater for the commercial gaming population, the PC setup is slowly turning to address the more bespoke needs of those engaged in therapy or rehabilitation.  The main influential factor over the success of any of these newly emerging Therapy games/software is that Microsoft endorse it and have done so by releasing its 'Service Development Kit (SDK)' for anyone to use and develop software with - something Nintendo never did.

This means that anyone with an idea and money to develop can put together a piece of software that will  potentially cater for, and address, the needs of a patient and therapist.  Software, such as SeeMe Rehabilitation, already demonstrates the potential that the Kinect/PC combination can offer.

There are still limitations though.  The Kinect recognises skeletal points in order to work effectively but can still become very confused.  Patients who present with hemiplegia, limited active movement in one arm or other similar postural deformities may find that the Kinect does not 'see' them.  Equally whilst someone using a self propelled wheelchair will be recognised straight away, someone else using a powered wheelchair, with joystick control for example, may find themselves struggling to be noticed and registered within the game.

About WHI's Reflexion -- the Rehab Measurement Tool

Tuesday, 5 February 2013

A feasibility study of an upper limb rehabilitation system using kinect and computer games.

Conf Proc IEEE Eng Med Biol Soc. 2012 Aug;2012:1286-9.

Pastor I, Hayes HA, Bamberg SJ.

+/- Click for more/less

Abstract
A new low-cost system for rehabilitation of the impaired upper limb for stroke survivors is presented. A computer game was developed specifically for this purpose and the user's impaired upper extremity is tracked using a downward-pointed Kinect, an inexpensive motion capture system commercially available from Microsoft. A Kalman filter was implemented to reduce data jittering. Patients are required to move their impaired arm, sliding it on top of a transparent support, in order to play the game. The game is personalized to the patient through specific settings that adapt to the patient's range of motion and motor control at the start of the game as well as performance during the game. The final score is proportional to the arm's movement speed. A feasibility study was carried out with one stroke survivor. The game was played for ten days and usability surveys were answered before and after the study. The patient was engaged with the game, found it easy to understand and reported willingness to use it in the home environment and enjoyment of the use in the clinic.

Click here for PDF

Full body gait analysis with Kinect

Conf Proc IEEE Eng Med Biol Soc. 2012 Aug;2012:1964-7.

Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A.

+/- Click for more/less

Abstract
Human gait is an important indicator of health, with applications ranging from diagnosis, monitoring, and rehabilitation. In practice, the use of gait analysis has been limited. Existing gait analysis systems are either expensive, intrusive, or require well-controlled environments such as a clinic or a laboratory. We present an accurate gait analysis system that is economical and non-intrusive. Our system is based on the Kinect sensor and thus can extract comprehensive gait information from all parts of the body. Beyond standard stride information, we also measure arm kinematics, demonstrating the wide range of parameters that can be extracted. We further improve over existing work by using information from the entire body to more accurately measure stride intervals. Our system requires no markers or battery-powered sensors, and instead relies on a single, inexpensive commodity 3D sensor with a large preexisting install base. We suggest that the proposed technique can be used for continuous gait tracking at home.

Click here for more information or here for PDF

Monday, 4 February 2013

Microsoft testing Kinect therapy system for soldiers.

TUE 18 DEC 2012 10:22PM GMT - Mike Williams

Games Industry

The US military and Microsoft are trying to simplify therapy for injured soldiers Microsoft microsoft.com Microsoft and the United States Air Force are testing the Kinect as part of a home therapy physical suite program for injured soldiers. Microsoft will also be discussing the project with Army's Communications-Electronics Research, Development, and Engineering Center, according to reporting by Defense News. The Kinect hardware is partnered with Infostrat's ReMotion360 physical therapy software.

+/- Click for more/less

“Microsoft is committing R&D and marketing resources to ensure that the [Defense Department] community is aware of the capabilities of the product, as well as the breadth of our partner community, which includes the system integrators,” said Microsoft director of public sector solutions Phil West. “The targeted scenarios include therapy-related functions, but they also span training and simulation, interactive user interfaces, and so on.”

The project is part of Microsoft's efforts to use the Kinect outside of the consumer market, with focuses on enterprise and public sector utilization. Other defense-related organizations, including Defense Advanced Research Projects Agency, the Joint Improvised Explosive Device Defeat Organization, Army Medicine, the Navy's Bureau of Medicine, Lockheed Martin, SAIC and CACI, have looked at the inexpensive motion-tracking capabilities of the Kinect for different purposes.

Click here for more information

Sunday, 6 January 2013

Validity of the Microsoft Kinect for assessment of postural control.

Gait Posture. 2012 Jul;36(3):372-7.

Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL.

Source: Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia

+/- Click for more/less

Abstract
Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting.

Click her for link

Thursday, 3 January 2013

Video game-based coordinative training improves ataxia in children with degenerative ataxia.

Neurology. 2012 Nov 13;79(20):2056-60.
Ilg W, Schatton C, Schicks J, Giese MA, Schöls L, Synofzik M.

+/- Click for more/less

Abstract
OBJECTIVE: Degenerative ataxias in children present a rare condition where effective treatments are lacking. Intensive coordinative training based on physiotherapeutic exercises improves degenerative ataxia in adults, but such exercises have drawbacks for children, often including a lack of motivation for high-frequent physiotherapy. Recently developed whole-body controlled video game technology might present a novel treatment strategy for highly interactive and motivational coordinative training for children with degenerative ataxias.

METHODS: We examined the effectiveness of an 8-week coordinative training for 10 children with progressive spinocerebellar ataxia. Training was based on 3 Microsoft Xbox Kinect video games particularly suitable to exercise whole-body coordination and dynamic balance. Training was started with a laboratory-based 2-week training phase and followed by 6 weeks training in children's home environment. Rater-blinded assessments were performed 2 weeks before laboratory-based training, immediately prior to and after the laboratory-based training period, as well as after home training. These assessments allowed for an intraindividual control design, where performance changes with and without training were compared.

RESULTS: Ataxia symptoms were significantly reduced (decrease in Scale for the Assessment and Rating of Ataxia score, p = 0.0078) and balance capacities improved (dynamic gait index, p = 0.04) after intervention. Quantitative movement analysis revealed improvements in gait (lateral sway: p = 0.01; step length variability: p = 0.01) and in goal-directed leg placement (p = 0.03).

CONCLUSIONS: Despite progressive cerebellar degeneration, children are able to improve motor performance by intensive coordination training. Directed training of whole-body controlled video games might present a highly motivational, cost-efficient, and home-based rehabilitation strategy to train dynamic balance and interaction with dynamic environments in a large variety of young-onset neurologic conditions.

CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that directed training with Xbox Kinect video games can improve several signs of ataxia in adolescents with progressive ataxia as measured by SARA score, Dynamic Gait Index, and Activity-specific Balance Confidence Scale at 8 weeks of training.

Click here for link

Balance recovery through virtual stepping exercises using Kinect skeleton tracking: a follow-up study with chronic stroke patients.

Stud Health Technol Inform. 2012;181:108-12.

Lloréns R, Alcañiz M, Colomer C, Navarro MD. Source Universitat Politècnica de València, Valencia, Spain.

+/- Click for more/less

Abstract
Stroke patients often suffer from hemiparesis, which affects their balance condition and consequently their self-dependency and quality of life. Balance rehabilitation can be a long and tedious process. Virtual rehabilitation systems have been reported to provide therapeutic benefits to the balance recovery of stroke patients while increasing their motivation. This paper presents a follow-up study involving chronic stroke patients to evaluate the clinical effectiveness of a virtual stepping exercise using skeleton tracking through a low-cost Kinect depth sensor.

Click here for link

Wednesday, 2 January 2013

Physiologic Responses and Energy Expenditure of Kinect Active Video Game Play in Schoolchildren.

Stephen R. Smallwood, MSc; Michael M. Morris, MSc; Stephen J. Fallows, PhD; John P. Buckley, PhD

Archives of Pediatric and Adolescent Medicine. 2012;166(11):1005-1009.

+/- Click for more/less

Abstract

OBJECTIVE To evaluate the physiologic responses and energy expenditure of active video gaming using Kinect for the Xbox 360.

DESIGN Comparison study.

SETTING Kirkby Sports College Centre for Learning, Liverpool, England.

PARTICIPANTS Eighteen school children (10 boys and 8 girls) aged 11 to 15 years.

MAIN EXPOSURE A comparison of a traditional sedentary video game and 2 Kinect activity-promoting video games, Dance Central and Kinect Sports Boxing, each played for 15 minutes. Physiologic responses and energy expenditure were measured using a metabolic analyzer.

MAIN OUTCOME MEASURES Heart rate, oxygen uptake, and energy expenditure.

RESULTS Heart rate, oxygen uptake, and energy expenditure were considerably higher (P < .05) during activity-promoting video game play compared with rest and sedentary video game play. The mean (SD) corresponding oxygen uptake values for the sedentary, dance, and boxing video games were 6.1 (1.3), 12.8 (3.3), and 17.7 (5.1) mL · min-1 · kg-1, respectively. Energy expenditures were 1.5 (0.3), 3.0 (1.0), and 4.4 (1.6) kcal · min-1, respectively.

CONCLUSIONS Dance Central and Kinect Sports Boxing increased energy expenditure by 150% and 263%, respectively, above resting values and were 103% and 194% higher than traditional video gaming. This equates to an increased energy expenditure of up to 172 kcal · h-1 compared with traditional sedentary video game play. Played regularly, active gaming using Kinect for the Xbox 360 could prove to be an effective means for increasing physical activity and energy expenditure in children.

Click here for link

Tuesday, 1 January 2013

Exergames for the elderly: towards an embedded Kinect-based clinical test of falls risk.

Stud Health Technol Inform. 2012;178:51-7.
Garcia JA, Felix Navarro K, Schoene D, Smith ST, Pisan Y.
University of Technology Sydney, FEIT, Australia.

+/- Click for more/less

Abstract
Falls are the leading cause of disability, injuries or even death among older adults. Exercise programmes that include a balance component reduce the risk of falling by 40%. However, such interventions are often perceived as boring and drop-out rates are high. The characteristics of videogames may overcome this weakness and increase exercise adherence. The use of modern input devices, such as the Microsoft Kinect, enables quantification of player performance in terms of motor function while engaging with games. This capability has just started to be explored. The work presented in this paper focuses on the development of a Kinect-based system to deliver step training while simultaneously measuring parameters of stepping performance that have shown to predict falls in older people.

Click here for link